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Abstract. Column mixing ratio of carbon dioxide (CO2) data alone do not provide enough information for source attribution.

Carbon monoxide (CO) is a product of inefficient combustion often used as a tracer of CO2. CO data can then provide a

powerful constraint on fire emissions, supporting more accurate estimation of biospheric CO2 fluxes. In this framework and

using the chemistry transport model TM5, a CO inversion using MOPITT v8 data is performed to estimate fire emissions

which are then converted in CO2 fire emissions through the use of emission ratio. These CO2 fire emissions allow us, then,5

to estimate adjusted CO2 Net Ecosystem Exchange (NEE) and respiration which are then used as priors for CO2 inversions

constrained either by the Orbiting Carbon Observatory 2 (OCO-2) v9 or by in situ data. For comparison purpose, we also

balanced the respiration using fire emissions from the Global Fire Database Emissions (GFED) version 3 (GFED3) and version

4.1s (GFED4.1s). We hence study the impact of CO fire emissions in our CO2 inversions at global, latitudinal and regional

scales over the period 2015 - 2018 and compare our results to the two other similar approaches using GFED3 and GFED4.1s,10

as well as with an inversion using CASA-GFED3 fire and NEE priors. After comparison at the different scales, the inversions

are evaluated against TCCON data. Results show that variations in posterior flux are much smaller across different prior

mean fluxes when compared with the data assimilated. However, at global scale and for most of the regions, while the net

fluxes remain robust, we can observe differences in fire emissions among the priors, resulting in large adjustments in the Net

Ecosystem Exchange (NEE) to match the fires and observations. Tropical flux estimates from in situ inversions are highly15

sensitive to the prior flux assumed, of which fires are a significant component. Slightly larger CO2 net sources are observed

when using GFED4.1s and MOPITT CO prior in CO2 OCO-2 inversions than compared with the other priors, particularly

during the 2015 El Niño event for most Tropical regions. Larger CO2 net sources with MOPITT CO and GFED4.1s priors

are also observed in Tropical Asia in CO2 in situ inversions than compared with the other priors during the 2015-2016 El

Niño period and shows large net emissions than compared to OCO-2 inversions. Evaluation with TCCON suggests that the20

re-balanced posterior simulated give biases and accuracy very close each other where biases have decreased and variability

matches better the validation data than with the CASA-GFED3. Further work is needed to improve prior fluxes in Tropical

regions where fires are a significant component.
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1 Introduction

Carbon dioxide (CO2) is the most important greenhouse gas contributing to global climate change (IPCC, 2014). Gaps in our25

understanding of the processes that control land-sea-atmosphere exchange of CO2 are a leading order uncertainty in future

projections of the global climate (Friedlingstein et al., 2014). The global net flux, and hence the airborne fraction, can be

deduced from the atmospheric growth rate (Ballantyne et al., 2012), and historically different efforts, such as the Global

Carbon Project (Le Quéré et al., 2009) have divided the total global net flux into its constituent components, consisting of

fluxes from the ocean, terrestrial biosphere, fossil fuel combustion and other anthropogenic activities, and biomass burning.30

CO2 emissions from fires are well-characterized at the largest space and time scales, but the uncertainties increase rapidly

as we look to finer space and time scales. Two approaches are currently employed to estimate global emissions from fires. The

first uses total fuel consumption per product of the burned area and the fuel consumption per unit area deduced from the burned

area and active fires products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The Global Fire Emissions

Database (GFED) products (van der Werf et al., 2010) and the Fire INventory from NCAR (FINN) (Wiedinmyer et al., 2011),35

for instance, use this approach. GFED was developed for understanding monthly contribution of fires to global carbon cycling

(van der Werf et al., 2004), while FINN was developed for near real-time estimation (Wiedinmyer et al., 2011). The second

technique deduces fuel consumption from Fire Radiative Power (FRP) determined from infrared thermal measurements. Two

emission inventories use this approach, the Global Fire Assimilation System (GFAS) (Kaiser et al., 2012) and the Quick Fire

Emissions Database (QFED) (Darmenov and Silva, 2015). Several studies used and compared these fire emissions inventories40

and found several differences in capturing wildfire activity over different areas as well as sources of uncertainties from the

cloud gap adjustments, small fires estimations and land use and land cover estimation (Liu et al., 2020). While these fire

emission inventories all use the MODIS thermal anomalies (Giglio et al., 2006), they use different methods of translating

emission factors and land cover to estimate fire emissions. Although the quantification of emissions from biomass burning

from space-based instruments has increased significantly, uncertainties regarding input data and methodologies can still lead45

to errors up to an order of magnitude for the total trace gases emissions (Vermote et al., 2009; Baldassarre et al., 2015).

Moving from global annual fluxes to finer scales in space and time complicates the inference a great deal. Interpreting

atmospheric measurements at these scales requires the use of an atmospheric chemistry transport model (CTM) and optimal

estimation machinery, frequently referred to in the literature as "atmospheric inversions", or "top-down inversions". However,

even using the same set of observations such as the Orbiting Carbon Observatory 2 (OCO-2) data in different inverse modeling50

systems can induced a large range of CO2 fluxes estimation at regional scales (Crowell et al., 2019; Peiro et al., 2022). Flux

estimates from top-down inversions have been shown to be sensitive to the choice of transport model (Schuh et al., 2019), and

observational coverage (Byrne et al., 2017). Even more importantly, atmospheric measurements of CO2 dry air mole fractions

represent the combined influence of all upstream emissions and transport, and so individual tracer measurements cannot be used

to differentiate between different source or sink processes without more information. Additionally, prior estimate of the fluxes55

and their associated uncertainties can impact posterior CO2 estimations (Lauvaux et al., 2012b, a; Byrne et al., 2017; Gurney

et al., 2003; Wang et al., 2018; Chevallier et al., 2005; Baker et al., 2006, 2010). A few studies (Liu et al., 2017a; Palmer et al.,
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2019; Crowell et al., 2019; Peiro et al., 2022) utilized XCO2 from OCO-2 to constrain top-down surface fluxes of CO2. All

of the mentioned studies found the Tropics to be a large source region for 2015-2016, though the explanations varied. Crowell

et al. (2019) showed that an ensemble of inversion models delivered robust results for Tropical regions when OCO-2 data was60

assimilated. The ensemble employed included different atmospheric transport models, prior ocean and terrestrial biosphere and

fire fluxes, and assimilation techniques. All of the participating models did not optimize fire and fossil fuel emissions. As such,

only the non-fossil land (net biosphere exchange; NBE) and ocean flux at regional scales was examined in the study, with no

attempt to attribute ensemble spread to different sources of uncertainty, such as the assumed fire emissions, which neglected to

include some of the global inventories, such as FINN, QFED, and GFED4.1s (earlier versions of GFED were included).65

Most inversion models do not explicitly constrain fire emissions with CO2 observations. Rather, it is assumed that fire

emissions have much lower uncertainty (generally believed to be less than 10% (Quéré et al., 2018; Quilcaille et al., 2018))

than the ocean and terrestrial biosphere fluxes (Quéré et al., 2018; Khatiwala et al., 2009, 2013), and so are held fixed, with

the net ecosystem exchange (NEE) being assumed to be the residual between the posterior total net land flux and the assumed

fire and fossil fuel emissions. This inference is problematic, not least due to the aforementioned fire emissions uncertainties in70

time and space, which could alias into inferred biospheric fluxes at continental or regional scales (Wiedinmyer and Neff, 2007;

Peylin et al., 2013). To reduce the uncertainties associated with fires and consequently with CO2 biospheric emissions, we can

examine gas species that are co-emitted with CO2 from fires, such as carbon monoxide (CO).

CO is an air pollutant that affects the oxidation capacity of the atmosphere through its reaction with the hydroxyl radical

(OH), leading to a relatively short atmospheric lifetime of one to three months because of its fast oxidation with OH. Reactions75

between CO and OH impact atmospheric composition on hemispheric (mainly in the Tropics) or even global scales (Logan

et al., 1981). CO also leads to the formation of tropospheric ozone (O3), an important short-lived greenhouse gas, and CO2.

CO is produced by incomplete combustion, i.e. when there is not enough oxygen to make CO2 (van der Werf et al., 2010),

such as in the case of smoldering fires. In this way, CO2 is strongly co-emitted with CO in the presence of combustion

(Bakwin et al., 1997; Potosnak et al., 1999; Turnbull et al., 2006). Previous studies used trace gases such as CO to improve80

the CO2 flux estimation or to separate CO2 emissions sources. Wang et al. (2010) used the CO2/CO correlation slope to

differentiate the source signature of CO2 and separate the different characteristics of CO2 emissions between rural and urban

sites in China. Basu et al. (2014) estimated CO2 emissions with Greenhouse gases Observing SATellite (GOSAT) data and the

Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project and studied seasonal variations of

CO2 fluxes during the 2009 and 2011 period over Tropical Asia. By using the Infrared Atmospheric Sounding Interferometer85

(IASI) CO measurements, their study showed an increased source of CO2 in 2010 that was caused not by rising of biomass

burning emissions but by biosphere response to above-average temperatures. In addition to CO, some studies worked on the

correlation between additional species and CO2 to constrain CO2 emission from biomass burning. Konovalov et al. (2014)

used satellite CO and aerosol optical depth data to constrain CO2 emissions from wildfires in Siberia by estimating FRP to

biomass burning rate conversion factors. Using this approach, they found that global emissions inventories underestimated CO290

emissions from Siberia from 2007 to 2011.
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As biomass burning emissions estimates are necessary for constraining top-down CO2 emissions, we want to provide our

CO2 inversion model with fire emissions that contain as much realism as possible. Fires that incorporate information from both

traditional bottom-up estimation techniques and atmospheric CO data may provide a better estimate than the global inventories

alone. The corresponding top-down CO2 fluxes imposing these optimized fire emissions should have more fidelity, particularly95

in the Tropics, where fires and the biosphere strongly interact with one another, and especially during severe drought conditions

associated with the 2015 El Niño. The objective of this paper is to assess the improvement in CO2 biogenic emissions estimates

when CO-informed fire emissions are imposed, particularly during the 2015 El Niño event and the post-event (2017 and 2018).

First, we constrain CO emissions using data from the Measurements of Pollution in The Troposphere (MOPITT). We use

these optimized CO emissions together with key vegetation parameters from GFED to create an updated estimate of fire CO2100

emissions that incorporates both sets of information. Finally, these updated fire emissions are imposed in an atmospheric CO2

inversion that constrains CO2 fluxes, using either OCO-2 XCO2 retrievals or in situ data, with different assumed fire emissions

and appropriately rebalanced prior biogenic fluxes.

This paper is ordered as follows. The assimilation and evaluation data sets and the inversion modeling framework are

described in Section 2. The results for CO and CO2 flux estimates and evaluation against independent data are presented in105

Section 3. The importance of these results for conclusions about the terrestrial biosphere using top-down inversion models is

discussed in Section 4. Conclusions and proposed future work are presented in Section 5.

2 Data and methodology

Our experiments focus on estimation of top-down fluxes using the TM5-4DVAR system (e.g. Meirink et al. (2008); Basu et al.

(2013); Crowell et al. (2018)). Our inversions are performed in sequence, first assimilating total column CO retrievals from110

the MOPITT v8 products to produce optimized CO fluxes which are used to update the assumed CO2 fire emissions, and then

we optimized CO2 fluxes using total column CO2 from OCO-2 version 9 retrievals or in situ data. We introduce hereafter the

observations used in the inversions, the inversion system and the observations used for validations.

2.1 Data sets

2.1.1 MOPITT data115

Space-based CO data are available from a large variety of instruments: IASI (Infrared Atmospheric Sounding Interferom-

eter, Turquety et al. (2004); Clerbaux et al. (2009)) on-board Metop satellite, MOPITT (Measurements of Pollution in the

Troposphere, Drummond et al. (2010, 2016)) on-board the Terra satellite, the Tropospheric Emission Spectrometer (TES,

Beer (1999)) on-board EOS-Aura and the Atmospheric InfraRed Sounder (AIRS, Aumann et al. (2003)) on-board EOS-Aqua.

These satellite data can be used to monitor fire emissions from an atmospheric point of view. So far, MOPITT has been the120

only space-based instrument deriving CO from near-infrared (NIR), thermal infrared (TIR) and multispectral radiances (TIR

+ NIR). Recently, TROPOspheric Monitoring Instrument (TROPOMI, Landgraf et al. (2016)) and GOSAT-2 TANSO-FTS-2
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(http://www.gosat-2.nies.go.jp/) are also retrieving CO from NIR radiances. However, MOPITT products have been consis-

tently validated against airborne vertical profiles and ground based measurements, allowing a well-understood of its continuity

and consistency (Worden et al., 2010; Deeter et al., 2019).125

MOPITT (Drummond, 1993) was launched in 1999 on board the Terra satellite. Terra flies in a sun-synchronous polar orbit

at an altitude of 705 km, crossing the equator at approximately 10:30 local time each morning and evening. It has a nadir view

with spatial resolution of 22 x 22 km. Its swath is 650 km wide, with 116 cross-track footprints. MOPITT achieves a global

coverage in about 4 days.

MOPITT uses gas filter correlation radiometry to retrieve CO mixing ratios from radiances in the 4.7 µm (TIR) and 2.3130

µm (NIR) spectral bands. TIR-only retrievals of MOPITT have been shown to be mostly sensitive to CO in the mid-upper

troposphere (excluding regions with strong thermal gradients such as deserts, Deeter et al. (2007)). NIR-only retrievals depend

on reflected solar radiation, and are also used for retrievals of CO total column, though the vertical sensitivity is stronger

near the surface than the TIR-only retrievals (Deeter et al., 2009; Worden et al., 2010). MOPITT TIR + NIR retrievals can

provide improved estimates of CO near source locations and has enhanced land surface sensitivity compared to the TIR only135

product (Deeter et al., 2015). In this study, we consequently use the level 2 TIR-NIR profiles product in order to have better

sensitivity of CO on the total column with greatest sensitivity in the lower troposphere (Deeter et al., 2013). With the observing

limitations of NIR data, this product is limited to daytime observations over land. In addition, because retrievals with surface

pressures less than 900 hPa might be of lower quality, they are removed for the assimilation (Fortems-Cheiney et al., 2011; Yin

et al., 2015). MOPITT retrieval products are generated with an optimal estimation-based retrieval algorithm and a fast radiative140

transfer model involving both MOPITT calibrated radiances and a priori knowledge of CO variability (Deeter et al., 2003).

The MOPITT operational fast forward model (MOPFAS) is a radiative transfer model based on HITRAN2012 (Rothman et al.,

2013) database with CO parameters in log(VMR) used to simulate the MOPITT measured radiances (Edwards et al., 1999). For

this retrieval method, cloud-free observations are required. The MOPITT v8 products consist of CO profile with 10 pressure

levels. In our assimilation system, simulated values of log XCO using the MOPITT v8 averaging kernel are compared to the145

retrievals, and the difference is then propagated into flux adjustments using the TM5 adjoint.

Several studies have used inverse modelling with MOPITT data to estimate CO emissions (Huijnen et al., 2016; Yin et al.,

2016; Nechita-Banda et al., 2018) and they showed that MOPITT v7 data have poor performance at detecting extreme events.

However, MOPITT v8 implemented a bias correction in the radiance which demonstrated improved retrievals relative to v7

(Deeter et al., 2019). In particular, MOPITT v8 does not exhibit a latitudinal dependence in partial CO column biases observed150

in v7 (Deeter et al., 2019). MOPITT v8 TIR-NIR product biases are within 5% at all levels when compared to NOAA aircraft

profiles. In addition, apparent long-term trends in v7 biases have been decreased to 0.1%/yr or less at all retrievals levels for

v8 products (Deeter et al., 2019). We thus expect to have better performance in the detection of extreme events by assimilating

MOPITT v8 and less bias in the inferred CO emissions overall.
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2.1.2 OCO-2 data155

The OCO-2 (Crisp et al. (2017); Eldering et al. (2017)) satellite was launched in July 2014 as the first NASA mission dedicated

to observing CO2 from space. The satellite flies in a sun-synchronous orbit with an altitude of 705 km and a 16 day revisit

time. OCO-2 passes each location at approximately 13:30 local time (Crisp and Johnson, 2005). OCO-2 observes 8 footprints

across a 10 km ground track, each of which is less than 1.29 km by 2.25 km (Eldering et al., 2017). Smaller spatial footprints

increase the number of cloud-free scenes allowing for more successful retrievals with lower errors (O’Dell et al., 2018), e.g.160

relative to the Greenhouse Gases Observing Satellite (GOSAT; Kuze et al. (2009)).

OCO-2 measures the absorption of solar reflectance spectra within CO2 (1.6 µm and 2.0 µm) and molecular oxygen (O2)

bands (0.76 µm). Retrievals from OCO-2 have sensitivity throughout the entire troposphere with highest sensitivity close to

the surface (Eldering et al., 2017). As with CO, retrievals of CO2 from TIR observations such as those from TES or AIRS

typically have lower sensitivity in the atmospheric boundary layer (Eldering et al., 2017).165

CO2 retrieval products come from the Atmospheric Carbon Observations from Space (ACOS) retrieval algorithm (O’Dell

et al., 2012; Crisp et al., 2012; O’Dell et al., 2018; Kiel et al., 2019). OCO-2 radiance measurements are analyzed with remote

sensing retrieval algorithms to spatially estimate column-averaged CO2 dry air mole fraction, XCO2. This quantity represents

the average concentration of CO2 in a column of dry air from the surface to the top of the atmosphere. ACOS XCO2 product

have been largely validated against ground-based observations from the Total Column Carbon Observing Network (TCCON;170

Wunch et al. (2017)). Our study uses the OCO-2 version 9 data product, as it contains all of the improvements as well as a

bug fix that was found after the release of the version 8 (v8). Being a nonlinear optimal estimation product, retrievals contain

residual errors that must be removed through the use of a bias correction (O’Dell et al., 2018; Kiel et al., 2019). Residual biases

in XCO2 were reduced especially over rough topography, which were found to be caused by relative pointing offsets between

the three bands. Even after the bias correction is applied, errors on regional scales likely remain (O’Dell et al., 2018). Despite175

these shortcomings, data coverage from satellites is dense in the Tropics relative to the global in situ network, which has very

few sites there. Despite biases with satellite data but thanks to their large spatial coverage, several studies prefer to use satellite

data over the Tropics. For instance, Liu et al. (2017a) and Palmer et al. (2019) have discussed the impacts of the 2015-2016 El

Niño event on the carbon cycle, particularly in the Tropics using OCO-2 v7. In addition, OCO-2 retrievals have been used in

several inversion models. For example, Crowell et al. (2019) showed that with different assumptions (such as a large ensemble180

of atmospheric inversions using different CTM, data assimilation algorithms, and prior flux), OCO-2 posterior inferred fluxes

globally agree with in-situ data, but that this agreement breaks down quickly at smaller space and time scales.

To finish regarding the data we are using in our study, Huijnen et al. (2016) and Patra et al. (2017) have shown that pyrogenic

CO2 emissions estimates from CO MOPITT data (through the use of emission factors) are consistent with OCO-2 measure-

ments using a forward simulation with a CTM. With this in mind, and also that OCO-2 and MOPITT have similar vertical185

sensitivity for their retrievals of CO2 and CO, we use these two data sets to constrain surface fluxes for these two tracers. Using

CO2 and CO together in this way is an important proof of concept for upcoming missions such as GeoCarb (Moore et al.,

2018), which will measure both tracers from geostationary orbit over the Americas.
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2.1.3 In situ data

The in situ CO2 data used for assimilation come from 5 collections in ObsPack format (Masarie et al., 2014). These collections190

include :

- the obspack_co2_1_GLOBALVIEWplus_v5.0_2019-08-12 (Cooperative Global Atmospheric Data Integration Project,

2019) which contribute to 93% of all data.

- obspack_co2_1_NRT_v5.0_2019-08-13 (NOAA Carbon Cycle Group ObsPack Team, 2019) which provides near-real time

provisional observation and so the data did not get final quality control.195

-obspack_co2_1_AirCore_v2.0_2018-11-13 which is provided by the balloon-borne AirCore instrument. This dataset in-

cludes almost the entire atmospheric column.

-obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-13 (NOAA Carbon Cycle Group ObsPack Team, 2018). This collec-

tion of data only comes from aircraft profiles at fives sites in Brazil.

-obspack_co2_1_NIES_Shipboard_v2.1_2019-06-12. The data come from 9 volunteer ships of opportunity operated by the200

Japanese National Institute for Environmental Studies (Tohjima et al., 2005; Nara et al., 2017).

These 5 collections provide around 540 assimilable observations per day. These CO2 measurements are collected in flasks

or by continuous analyzers at surface, tower, and aircraft sites (see Fig. 1) and are an important anchor for this exercise because

their error characteristics are generally well-known, being directly established via calibration traceable to World Meteorological

Organization standards. Additionally, these measurements provide traceability to a long history of flux estimates derived from205

these data as an atmospheric constraint.

2.1.4 Observations for validation : TCCON data

We evaluate our posterior model mole fractions against retrievals from TCCON, which is a ground-based network of Fourier

transform spectrometers established in 2004 and designed to retrieve atmospheric gases from NIR spectra (Wunch et al., 2011).

The global monthly means of the total column CO2 measurements have accuracy and precision better than 0.25% (less than 1210

ppm) relative to validation with aircraft measurements (Wunch et al., 2010, 2011). TCCON measurements have been used in

several papers for validation of satellite measurements (e.g. Kulawik et al. (2016); Wunch et al. (2017); O’Dell et al. (2018);

Kiel et al. (2019)). Our evaluation uses data from 23 operational instruments of TCCON globally. Table 1 lists all TCCON

sites used for the evaluation and Fig. 2 represents the location of the sites over the globe.

2.2 Chemistry transport model TM5215

We employ TM5 (Krol et al., 2005) and the Four-dimensional Variational (4DVAR, Meirink et al. (2008)) framework to link

trace gas emissions to atmospheric tracer mixing ratios. Several inverse modelling studies have estimated CO emissions or CO2

emissions using TM5-4DVAR (Hooghiemstra et al., 2011; Van Leeuwen et al., 2013; van der Laan-Luijkx et al., 2015; Nechita-

banda et al., 2018; Basu et al., 2018; Crowell et al., 2018, 2019). TM5 is driven by 3-hourly offline meteorological fields from

the ERA-Interim (Dee et al., 2011) reanalysis of the European Centre for Medium range Weather Forecasts (ECMWF). We220
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Figure 1. Distribution of assimilated in situ measurements around the world. The instrument platform is indicated by marker shape, whereas

the color represents the laboratory collecting the data. NOAA is the United States National Oceanic and Atmospheric Administration, CSIRO

is the Australian Commonwealth Scientific and Industrial Research Organisation, ECCC is Environment and Climate Change Canada, LBNL

is the Lawrence Berkeley National Laboratory, IPEN is the Brazilian Instituto de Pesquisas Energeticas e Nucleares, NIES in the Japanese

National Institute for Environmental Studies, ICOS is the European Union Integrated Carbon Observation System, and SIO is the Scripps

Institute of Oceanography. Mobile shipboard programs are shown with a single marker at the mean location of the measurements. Figure

from Jacobson et al. (2020a).

run TM5 on a 3◦x2◦ horizontal resolution grid for the CO inversion and on a 6◦x4◦ horizontal resolution grid for the CO2

inversions with 25 vertical hybrid sigma-pressure levels. The initial condition for CO is globally constant to 80ppb, which is

then combined with a 6 month spin-up to account for discrepancies from the real atmospheric distribution of CO. The initial

global distribution of CO2 is taken from the CarbonTracker (Peters et al. (2007) version CT2017, with updates documented

at http://carbontracker.noaa.gov) posterior mole fractions. The CT2017 fields are constrained over the period 2000-2016 with225

data from the global in situ. Both inversions are run from July 1, 2014 until March 1, 2019, i.e. with six months of spinup and

two months of spindown to avoid so-called "edge effects" affecting the period of interest from 2015-2018.

The CO sink from OH is represented in TM5 by a monthly OH climatology from Spivakovsky et al. (2000). This OH

climatology is scaled by a factor 0.92 based on methyl chloroform simulations (Huijnen et al., 2010).
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Table 1. Geolocation and reference of each TCCON station used for the evaluation section.

TCCON sites Country Latitude Longitude Data revision Reference

Eureka Canada 80.05N 86.42W R3 Strong et al. (2019)

Ny-Ålesund Spitsbergen 78.9N 11.9E R0 Notholt et al. (2014b)

Sodankylä Finland 67.4N 26.6E R0 Kivi et al. (2014)

Białystok Poland 53.2N 23.0E R2 Deutscher et al. (2019)

Bremen Germany 53.10N 8.85E R0 Notholt et al. (2014a)

Karlsruhe Germany 49.1N 8.4E R1 Hase et al. (2015)

Paris France 48.8N 2.4E R0 Té et al. (2014)

Orléans France 47.9N 2.1E R1 Warneke et al. (2019)

Garmisch Germany 47.5N 11.1E R2 Sussmann and Rettinger (2018)

Park Falls Wisconsin (USA) 45.9N 90.3W R1 Wennberg et al. (2017)

Rikubetsu Japan 43.5N 143.8E R2 Morino et al. (2018b)

Lamont Oklahoma (USA) 36.6N 97.5W R1 Wennberg et al. (2016)

Anmeyondo Korea 36.5N 126.3E R0 Goo et al. (2014)

Tsukuba Japan 36.1N 140.1E R2 Morino et al. (2018a)

Edwards California (USA) 34.2N 118.2W R1 Iraci et al. (2016)

Caltech California (USA) 34.1N 118.1W R0 Wennberg et al. (2014)

Saga Japan 33.2N 130.3E R0 Kawakami et al. (2014)

Izaña Tenerife 28.3N 16.5W R1 Blumenstock et al. (2017)

Ascension Island UK 7.9S 14.3W R0 Feist et al. (2014)

Darwin Australia 12.4S 130.9E R0 Griffith et al. (2014a)

Réunion Island France 20.9S 55.5E R1 De Mazière et al. (2017)

Wollongong Australia 34.4S 150.9E R0 Griffith et al. (2014b)

Lauder 125HR New Zealand 45.0S 169.7E R0 Sherlock et al. (2014)

2.3 Inversion system and analyses230

We use TM5-4DVAR to infer fluxes as the long window ensures a long term spatio-temporal distribution of the trace gas in

the atmosphere that is consistent with multi-year flux distributions. The TM5-4DVAR model is used in this study to estimate

CO and CO2 emissions with the corresponding satellite and in situ. TM5-4DVAR utilizes optimal estimation to minimize a

Bayesian cost function (Rodgers, 2000) in order to find the state vector corresponding to surface emissions of CO or CO2

that best match the observations within their relative uncertainties. The a posteriori flux is found by minimizing the mismatch235

between the forward model and the observations weighted by the inverse of the observation error covariance matrix R while

staying close to a set of a prior fluxes weighted by the inverse of the a priori error covariance matrix B. These matrices are

discussed in more detail in Section 2.3.1. Although the CTM is quasi-linear, the observation operator for CO is not. Since we

use log(VMR) for the MOPITT retrievals as the CO observable, the non-linear optimizer M1QN3 from Gilbert and Lemaréchal
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Figure 2. Localisation of the TCCON site used in this study over the globe.

(1989) is employed. Both the transport and observation operators for CO2 are linear, and so we employ the conjugate gradient240

method to estimate the optimal CO2 emissions, the implementation of which is described in great detail in Basu et al. (2013).

2.3.1 A priori information

a) CO parameterizations

Injection heights, in the CO inversion, are computed using IS4FIRES (Integrated System for Wild-Land Fires, http://is4fires.

fmi.fi/, Sofiev et al. (2013)). This emission database is driven by re-analysis FRP obtained from MODIS (Giglio et al., 2006))245

instrument on board Aqua and Terra satellites.

Three emissions categories are used for the CO inversion : anthropogenic (which represents the combustion of fossil fuels

and biofuels), natural sources (direct CO emissions from vegetation and oceans) and biomass burning (vegetation fires). In our

configuration, we only optimize biomass burning emissions.

Anthropogenic emissions come from MACCity inventory (Granier et al., 2011). This inventory provides projected inter-250

annual trends in the anthropogenic CO emissions.
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The oxidation of CH4 and non-methane volatile organic compounds (NMVOCs) such as isoprene (C5H8) and monoterpene

(C10H16) leads through photolysis and reaction with OH to the formation of formaldehyde, the major chemical source of CO

(Atkinson, 2000). Isoprene is a member of the group of hydrocarbons known as terpenes. It is explicitly taken into account in

TM5 as it represents the dominant biogenic NMVOC emission (Guenther et al., 2012). Isoprene and monoterpene oxidation255

schemes are based on the mechanisms developed by Yarwood et al. (2005). Isoprene contributes to 9-16 % of the global CO

burden (Pfister et al., 2008). They account for 68% in TM5 of the biogenic NMVOC emissions that react to produce CO. By

contrast, monoterpene accounts for 15% (Tsigaridis et al., 2014). The chemical production of CO coming from the oxidation

of methane and NMVOCs requires monthly 3-D CO fields produced by oxidation of biogenic and anthropogenic hydrocarbons

including CH4. We use chemical production of CO from the oxidation of CH4 and from NMVOCs by using a 2010 simulation260

with the full chemistry version of TM5 (Huijnen et al., 2010).

A priori biomass burning CO emissions are taken from the GFED4.1s inventory (van der Werf et al., 2010) and incorporate

a daily cycle.

The first version of GFED was released in 2004. Since then, several improvements have been incorporated into GFED.

Improvement on the mapping of burned area from active fire data in GFED2 (Giglio et al., 2006) was no longer necessary265

when the MODIS product became available for GFED3 (Giglio et al., 2009). Burned area particularly affects the spatiotemporal

variability of carbon emissions during fires. This spatiotemporal impact has been implemented in GFED with biogeochemical

modeling framework providing estimation of biomass combustion over different vegetation types (Giglio et al., 2013). All

GFED versions are then based on the Carnegie-Ames-Standford Approach (CASA) model adjusted to account for fires (see

van der Werf et al. (2004) and van der Werf et al. (2017) for more details). The most recent versions (GFED4 and GFED4.1s270

which includes small fire burned area) modified the burned-area-to-burned fraction conversion, which have been shown to

increase burned area and fire carbon emissions of 11% in GFED4.1s compared to GFED3 (van der Werf et al., 2017) at the

global scale. Liu et al. (2017b) found that with the omission of small fires in GFED3, global fire emissions are underestimated.

Accounting for small fires increased global burned area and carbon emissions by 35% (Randerson et al., 2012), and improved

the agreement of spatial distribution between active fires and burned area over regions with large fires such as savanna fires and275

boreal forests. Including small fires in GFED amplifies emissions over regions where drought stress and burned area varied

considerably from year to year in response to, for instance, the El Niño Southern Oscillation (ENSO). The GFED4.1s burned

area are based on fire observations from the MODIS instrument with a 500 m horizontal resolution. The MODIS burned area

data have been combined with active fire data from Tropical Rainfall Measuring Mission (TRMM), the Visible and Infrared

Scanner (VIS), and the Along-Track Scanning Radiometer (ATSR), three other instruments on board with MODIS. GFED4.1s280

has a spatial resolution of 0.25◦x0.25◦ and includes estimates of burned area, carbon emissions, monthly biospheric carbon

fluxes based on the CASA-GFED4s framework and the information from small fire fraction. Additionally, monthly carbon

emissions of GFED4.1s distinguish between different vegetation types such as boreal forest, agricultural waste, temperate

forest, deforestation, peat-land, and savanna.

The prior uncertainty covariance matrix B is described by a product of uncertainty variance and correlations in space and285

time. Spatially, a Gaussian correlation length scale of 1000 km is used, while we assume the prior errors have a temporal
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correlation scale of 4 days. As in Hooghiemstra et al. (2011, 2012) and Nechita-Banda et al. (2018), an uncertainty standard

deviation of 250% has been applied for the grid-scale prior of biomass burning emission. This large uncertainty is assumed

since these inventories support large uncertainties. As mentioned by Hooghiemstra et al. (2011), this yields between 40-100%

of prior continental emissions uncertainty, depending on the region.290

b) Computation of an optimized CO2 Fire Prior

In this section, we describe the computation of our optimized prior fire emission we will use for observing impact of CO fire

emissions in the posterior CO2 biospheric fluxes. For each pixel of CO posterior biomass burning emissions constrained by

MOPITT retrievals, we break down the global CO fire emissions using the GFED4.1s partitioning in order to obtain posterior

simulated CO fire emissions for each monthly vegetation type (savanna, boreal forests, peat, temperate forests, deforestation295

and agriculture waste). Figure 3 shows for instance the GFED vegetation type for each year over the lands. Each color represents

pixel with one or several vegetation types.

Figure 3. GFED vegetation types by pixel on a 3◦x2◦ grid for a) 2015, b) 2016, c) 2017, and d) 2018

We first calculated the emission ratios ER(CO/CO2) which allowed us to convert CO fire emissions to CO2 fire emissions.

The emission ratios are computed using the GFED emission factor for each vegetation type (annotated i in the equation 1).

Following the equation of Andreae and Merlet (2001) :300

ER(CO/CO2)i
=

EFCOi

EFCO2 i

.
MCO2

MCO
(1)
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with MCO = 28 g.mol−1 and MCO2 = 44 g.mol−1 the molecular weights of CO and CO2; EF are the emission factors

for each vegetation types describes in table 2. Emission factors allow us to estimate trace gases emissions from carbon losses

during fires (Andreae and Merlet, 2001).

Table 2. Emission Factors in g.kg−1.DM−1 for CO and CO2, and emission ratios ER(CO/CO2) available from GFED4.1s by vegetation

types

Savanna Boreal forests Temperate forests Deforestation Peat Agriculture waste

EFCO 63 127 88 93 210 102

EFCO2 1686 1489 1647 1643 1703 1585

ER(CO/CO2) 0.059 0.134 0.084 0.089 0.194 0.101

We then aggregated the 0.25◦x0.25◦ vegetation fraction partitioning of GFED to create vegetation masks at a 3◦x2◦ grid. We305

applied this aggregated mask to the posterior simulated CO fires, which partitioned the posterior CO fires by vegetation types

(we took care to divide the emissions by number of vegetation found by pixel). Finally, the emission ratio for each vegetation

type was divided to the posterior CO fire partitioned as used in Christian et al. (2003) and Basu et al. (2014). This results in

monthly CO2 emission per vegetation type per grid box. Finally, we sum up these emissions across all surface types in order

to get monthly total optimized prior CO2 biomass burning emissions that we called "FIREMo". We used this FIREMo as the310

fire emissions in CO2 inversions along with a re-balanced respiration and NEE in order to have the net fluxes in balance with

fire estimate, using the parameterization described in the following section (2.3.1.c).

c) CO2 parameterizations

CO2 emissions are separated into four categories: anthropogenic sources, ocean fluxes, terrestrial biosphere fluxes and fires.

The anthropogenic emissions are taken from the Open-source Data Inventory for Anthropogenic CO2 2018 (ODIAC2018;315

Oda and Maksyutov (2011)). A diurnal cycle is imposed by TIMES product with weekly scaling as suggested by Nassar et al.

(2013). Fossil fuel emissions are not optimized in the CO2 inversions, as is typical of global tracer transport inversions (e.g.

Peylin et al. (2013); Crowell et al. (2019)). Ocean fluxes are taken from the climatological fluxes described in Takahashi et al.

(2009). They are assumed to have an uncertainty variance of 50%.

Terrestrial biosphere fluxes and fire emissions are difficult to disentangle a priori, and some inverse modeling studies (e.g.320

Crowell et al. (2019)) choose instead to report the net land fluxes. Likewise, some global land flux estimates such as GEOS-Carb

(Ott, 2020) use fire estimates to revise the terrestrial biosphere flux estimates through modification of ecosystem respiration.

We take a similar approach, starting with the gross primary production and respiration estimates from the GEOS-Carb CASA-

GFED 3-hourly 0.5◦×0.625◦ (Ott, 2020). We then modify the net flux in concert with each fire emissions estimated as follows.
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Net ecosystem exchange (NEE) in the GEOS-Carb product is expressed as the sum of heterotrophic respiration (Rh) and325

gross ecosystem exchange (GEE) :

NEE3 =Rh3 +GEE3 (2)

We modified the respiration from GEOS-Carb (Rh3) to create respiration estimates for GFED4.1s (Rh4) and MOPITTOpt

(RMo linked with the FIREMo we calculated previously) which balance with the updated CO2 fire estimate so that estimated

respiration increases (decreases) in the places where each fire estimate is smaller (larger) than FIRE3 (GFED3):330

Rhx=Rh3 +max(FIRE3−FIREx,0) (3)

where x is either “4" or “Mo". The resulting net ecosystem exchange, i.e. NEE4 or NEEMo, is then computed using (2), with

GEE3 used for both NEE4 or NEEMo equations. We then apply a simple rebalancing scheme to match the yearly NOAA

global mean growth rate (AGRNOAA) for 2015-2018 (see table 3), since

AGR = NEE + FIRE + FOSSIL + BIOFUEL + OCEAN (4)335

whereX represents the global total annual flux for categoryX . We use ODIACv2018 (with 2018 repeated for 2019) to compute

the global fossil fuel totals (values in the table 3), BIOFUEL from the CASA land biosphere model (van der Werf et al., 2004),

and a fixed annual value of -2.6 PgC/yr for the oceans for simplicity, and we use FIRE from each source described above.

Table 3. Global total fossil fuel emissions, fire and biofuel emissions and AGR from NOAA in PgC/yr.

2014 2015 2016 2017 2018 2019

BIOFUEL 0.478 0.479 0.476 0.486 0.486 0.486

FOSSIL FUEL 9.85 9.89 9.91 10.07 10.28 10.28

FIRE3 1.83 2.03 1.63 1.97 1.97 1.49

FIRE4 1.88 2.09 1.73 1.69 1.64 0.34

FIREMo 1.62 1.82 1.47 1.58 1.56 1.44

AGRNOAA 4.3 6.3 6.06 4.54 5.05 5.55

Any mismatch between the AGR derived from our prior flux estimates (AGRx) and AGRNOAA is assumed to be due to an

incorrect estimate of global NEE. We adjust NEE at each gridpoint with a simple scaling on global total respiration (i.e. Rhx)340

and GEE:

AGRNOAA−AGRx = (1 + k)Rhx + (1− k)GEE. (5)

where x is either 3, 4, or Mo, depending on whether we use FIRE3 (GFED3), FIRE4 (GFED4.1s), or FIREMo. This equation

is easily solved for k using each annual global total, and the resulting corrections are applied to each 3-hourly gridded value

of GEE and respiration for each choice of fire emissions. In this way, the a priori global CO2 emissions are ensured to match345
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Table 4. Experimental Configurations

CMS-GFED3 GFED3re GFED4re MOre

ODIAC Fossil X X X X

FIRE3 (GFED3 Fires) X X

FIRE4 (GFED4.1s Fires) X

FIREMo (MOPITT Fires) X

Takahashi Ocean Flux X X X X

Annual Total Matches AGRNOAA X X X

the annual global growth rate as measured by NOAA regardless of the fire emissions assumed, as well as a spatial pattern and

seasonality that aligns with bottom up models’ GEE and Rh estimates as closely as possible.

We run the CO2 inversions with the re-balanced terrestrial biosphere net flux NEErex corresponding to either GFED3,

GFED4 or FIREMo priors. In order to assess the impacts of the rebalancing procedure, we perform a fourth experiment that

assumes the GEOS-Carb NEE as the prior biosphere flux with GFED3 fires, and the results are labeled in what follows as350

CMS-GFED3. All CO2 FIRE priors include both biomass and biofuel burning. The details of each of the 4 priors and the

experimental configurations are detailed in table 4.

3 Results

In this study, several inversions were performed with the TM5-4DVAR inversion framework. MOPITT v8 L2 CO data were

assimilated to constrain fire emissions of CO. Separately, OCO-2 v9 XCO2 and in situ CO2 are used to constrain net fluxes of355

CO2 (see table 5).

Table 5. CO2 inversions used in this study with the observations assimilated, NEE and fire emissions associated.

Inversions name NEE used Fire used data assimilated

GFED4re NEEre4 FIRE4 OCO-2

GFED3re NEEre3 FIRE3 OCO-2

MOre NEEreMo FIREMo OCO-2

CMS-GFED3 GEOS-Carb FIRE3 OCO-2

IS4re NEEre4 FIRE4 in situ

IS3re NEEre3 FIRE3 in situ

ISMOre NEEreMo FIREMo in situ

ISCMS GEOS-Carb FIRE3 in situ

We optimized CO biomass burning emissions and CO2 biospheric and oceanic emissions on a weekly basis. For the OCO-2

and in situ CO2 inversions, we use four different sets of prior biosphere and fire emissions (see section 2.3.1).
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In section 3.1, we examine the impacts of assimilating MOPITT v8 XCO observations on inferred fire CO emissions after

vegetation partition and the comparison with the prior GFED4.1s. CO emissions categorized by vegetation combustion types360

are the one used for developing FIREMo.

In section 3.2, we focus on the CO2 inversions. As fire emissions are not optimized in CO2 inversions, we will examine how

posterior NEE varies according to observation constraint and the imposed fire fluxes. We first compare (in 3.2.1) the variability

and magnitude between the biospheric priors used in the CO2 inversions over the globe. zonal bands and over the same regions

as in Crowell et al. (2019), which are Transcom (Gurney et al., 2002) regions that are further subdivided at the equator (which365

we will called OCO-2 MIP regions). The regions are defined in Fig. 4 and are composed of 16 land regions and 11 ocean

regions. We will focus on regions over land, as we are mostly interested in the interplay between assumed fire emissions and

inferred NEE. We then investigate the covariation of imposed CO2 fire emissions and optimized NEE with OCO-2 data and

in-situ data (3.2.2). Finally, posterior simulated CO2 mixing ratio are validated against TCCON data over the globe in section

3.2.3.370

Figure 4. OCO-2 MIP regions for which prior and posteriors gridded fluxes are aggregated for comparison
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3.1 Fire CO emissions partitioned by vegetation combustion : MOPITT optimized emissions versus GFED4.1s

emissions

Figure 5 shows the annual CO fire emissions partitioned by vegetation combustion between MOPITT CO optimized fire

emissions and fire prior (GFED4.1s) over the globe and by OCO-2 MIP regions. We can see globally, that depending on

the regions, the assimilation of MOPITT data implies less or more CO fire emission than the prior. For instance, in 2015,375

the Northern Tropical South America shows more CO fire emissions for all types of vegetation (agricultural, savanna and

deforestation) with the posterior while the Southern Tropical South America gives more CO with the prior for the same

types of vegetation. For some other regions, such as Northern Temperate America and Temperate North Africa, MOPITT and

GFED4.1s give almost the same amount of CO fire emissions for all types of vegetation. Over Temperate Northern Africa, this

can be a result of bias satellite data due to cloud coverage, giving the CO posterior emissions closer to the prior GFED4.1s.380

However, for Northern Temperate America, the prior might be well enough constrained and validated over this region, to give

similar CO fire emissions than the posterior CO. For Temperate North Africa, MOPITT posterior fires remain close to the prior

GFED4.1s estimates, meaning that the inferred emissions are consistent with GFED4.1s. This region is known to have a lot of

Saharan dust transported across the Atlantic ocean and towards Europe most of the year and to be largely cloudy during the wet

season of the African monsoon (from May to August), which could explain the posterior emissions being close to the prior. This385

is also the case for Northern Tropical Africa, however, MOPITT posterior fires has lower emissions than the prior GFED4.1s

estimate. But, we still need further investigation over Northern Tropical Africa to understand why GFED4.1s and MOPITT

are different each other. Tropical South America is also known to have a cloudy coverage limiting satellite observations, but

over this region we only observe similar emissions between the prior and the posterior for Northern Tropical America, even if

MOPITT has slightly higher emissions, while for Southern Tropical America, differences between the prior and the posterior390

are strong.

Differences between MOPITT posterior emissions and GFED4.1s are particularly large for Tropical Africa and for the

boreal forests of North America and Eurasia with difference of more than 15 TgCO/yr. On average for the 2015-2018 period

of study and for the regions Europe, North Tropical South America, Temperate South America, Temperate Australia and North

Tropical Asia, MOPITT gives higher emissions for the deforestation types, savanna and agricultural waste. This is the case for395

the Northern Tropical Southern America and Australia, which are dominated by trees and grass savanna. This characteristic

has been also observed by the previous study of Pechony et al. (2013) who compared the older version of GFED with MOPITT

and TES emissions for the period 2005-2008.

For Eurasia Temperate, discrepancies appear between MOPITT and GFED4.1s for all type of vegetation and for all years.

These regions are characterized by agricultural waste and savanna, as well as temperate forests, regarding the GFED4.1s400

vegetation types. The discrepancies observed between MOPITT and GFED4.1s could then be that the vegetation type is not

well represented for these regions. As mentioned in Pechony et al. (2013), agriculture and savanna vegetation types might not

be the dominant burning vegetation type over North Africa and the Middle East, since these regions have seen an increase in

croplands area well control by human activities and so burn rarely. However, Kazakhstan is a region of temperate forest often
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dominated by fires (Venevsky et al., 2019), a characteristic that MOPITT posterior emissions seem to observe as mush as the405

prior GFED4.1s. We can also observe that over Northern Tropical Asia, MOPITT fire emissions are higher than GFED4.1s (see

Fig. 5 and Fig.A2). This is observed for all years, where MOPITT emissions are almost 5 TgCO/yr (2 TgCO/yr) for savanna

(for the other vegetation types) higher than from GFED4.1s. As mentioned in Pétron et al. (2002) and Arellano et al. (2004),

CO emissions in Northern Tropical Asia are significantly underestimated in current inventories.

Previous studies have shown that peat area and depth, producing large amount of carbon (∼ 0.60 PgC/yr which represents410

26% of the total carbon fire emissions, Nechita-Banda et al. (2018)), were found to have significant uncertainties in Indonesia

in the emissions inventories (Lohberger et al., 2017; Hooijer and Vernimmen, 2013). The added value of MOPITT CO obser-

vations is especially important for peat lands situated over Indonesia and Tropical Asia (see Fig. 3). MOPITT tends to capture

smaller fires due to the large field of view (Pechony et al., 2013). In addition, MOPITT can capture the seasonality of peat fires

over Indonesia in comparison to GFED4.1s. Figure A1 shows for Southern Tropical Asia (mainly visible in 2015 due to the415

large emissions) that GFED4.1s have a fire peak earlier than MOPITT. van der Laan-Luijkx et al. (2015) and Nechita-banda

et al. (2018) hypothesized that GFED4.1s might not capture the timing of emissions over area with peat fires due to the use of

burned area, which may be more sensitive to the initial stages of the fire than to the continued burning. Knowing this fact, and

the large uncertainties attributed to fire emissions inventories in the Tropics, will be important for the following of this study

in the computation of FIREMo and its uses in the CO2 inversions.420

Overall, GFED4.1s gives higher CO fire emissions than MOPITT with some exception where MOPITT gives higher CO

fire emissions particularly during the 2015-2016 El Nino period such as Northern Tropical South America and for agricultural

waste, savanna and deforestation of Northern Tropical Asia.

3.2 OCO-2 and in situ CO2 inversions with different fire and NEE priors

We performed inversions with different CO2 fire and NEE priors assimilating: i) OCO-2 XCO2 retrievals and ii) CO2 in-situ425

data. See table 5 for details of the eight CO2 inversions.

To investigate the uncertainty in inferred CO2 emissions arising from the selection of fires, we perform CO2 inversions with

three different global gridded fire estimates. The first is taken from the GEOS-Carb GFED3 product (Ott, 2020), which we

label “FIRE3"; for the second we use GFED4.1s, denoted “FIRE4". The third set, described in Section 2.3.1.b and denoted

“FIREMo", is created by first optimizing CO emissions with MOPITT observations and then converting them to CO2 emis-430

sions using the landcover ratios and parameters in GFED4.1s. The methodological differences between FIRE3 (GFED3) and

FIRE4(GFED4.1s) are described in section 2.3.1.a. Figure 6 shows annual differences between FIRE3 and FIRE4 from 2015

through 2018 over the OCO-2 MIP regions. We note that regional differences are as large as 140 TgC per year, or roughly

∼10% of the annual global fire emissions budget which has been estimated to 1.6 ± 0.7 GtC/yr (Friedlingstein et al., 2020).

Additionally, the size and sign of the differences varies by year and by region. For instance, FIRE3 (GFED3) generally predicts435

higher CO2 emissions over the Boreal regions, while FIRE4 (GFED4.1s) largely predicts more fire emissions from the North-

ern midlatitudes. This is consistent with differences between the two models, i.e. GFED4.1s uses a different set of emission

factors separating trace gas emissions and aerosol from boreal forest to Temperate forests (Akagi et al., 2011; van der Werf
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Figure 6. Annual differences between FIRE4 and FIRE3 in PgC/yr over the regions of Fig. 4 for a) 2015, b) 2016, c) 2017 and d) 2018.

et al., 2017). van der Werf et al. (2017) have shown that GFED3 does not capture the different patterns of fire severity between

the boreal regions of North America and Eurasia and the differences between Boreal and Temperate forests fires (which could440

explain the large difference between FIRE4 and FIRE3 in Fig.6). In addition, van der Werf et al. (2017) found that including

small fire burned area in GFED4 doubled the burned area in Temperate North America and Europe compared to GFED3. Inter-

estingly, the differences in the Tropics have a pronounced meridional structure, where GFED4.1s predicts smaller emissions in

South America, Tropical Asia, and North Africa (after 2016), and larger emissions in Southern Tropical Africa. The addition

of small fire burned area included in GFED4.1s has a strong impact in the Southern Tropical Africa regions where agricultural445

waste burning and shifting cultivation are important drivers of fire activity. van der Werf et al. (2017) have shown that the

increase of burned area in these regions were associated with small fire burned area from the last GFED version. Small fires

linked with deforestation and agricultural waste are also important over the Indonesia, however deforestation activity decreased

of almost 50% in 2017 and 2018 thanks to several Indonesian policies in order to prevent forest fires and land clearing with

particularly the new law avoiding to clear forest for oil palm plantations (Global Forest Watch, 2020). This might explain the450

decrease in fire emissions over Southern Tropical Asia in 2017 and 2018 with GFED4.1s, in addition that 2017 and 2018 were

not impacted by the 2015 El Niño event where large fires burned in Indonesia.
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Figure 7. Annual prior CO2 emissions, in global and by latitude bands, used later in top-down inversions. Annual net flux (lines), NEE (bars

with hatches) and FIRE (bars with darker colors) prior emissions are represented from 2015 through 2018 (left to right) between GFED4.1s

(blue), GFED3 (green), MOPITTopt (red) and CMS (black).

3.2.1 Prior NEE and fires CO2 fluxes

Figure 7 shows annual CO2 emissions for the prior estimates in global and by latitude bands from 2015 through 2018. The

prior categories shown are fire, NEE and net fluxes for the prior GFED4, GFED3, MOPITTopt and CMS-GFED3. At the455

global scale, the three non-CMS priors (GFED3, GFED4, MOPITTopt) give the same net sink of carbon for the whole period

(matching the NOAA AGR with the same assumed fossil and ocean fluxes), decreasing from 2015 through 2018, while the

CMS-GFED3 prior gives sources of carbon increasing in time. Global fire emissions as well as net carbon fluxes, of the non-

CMS priors, are within the spread of estimation of the Global Carbon Budget estimated by Le Quéré et al. (2018) and Bastos

et al. (2018). The decrease (increase) in NEE sinks (net sources) for CMS-GFED3 prior during the period of study is driven460

by the fact that the product imposes a long term balance between fire and NEE and is not constrained to match the measured

growth rate of CO2 in the atmosphere. The discrepancy shows up particularly in the Northern Hemisphere Extra-Tropics (NH

Ext) and Southern Hemisphere Extra-Tropics (SH Ext) where sinks of CMS are generally smaller than the others.
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Figure 8. Same as Fig. 7 but for Europe and Northern Tropical Africa regions.
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At latitude scale, we can see that the non-CMS priors give more net sinks in the Northern (between -1 PgC/yr and -4 PgC/yr)

and Southern Hemispheres Extra-Tropics, while CMS has lower values and even net sources in 2015 for both hemispheres465

and in 2018 as well for the Northern Hemisphere. These differences between the priors is also observed for the Northern and

Southern Hemisphere OCO-2 MIP regions (Fig. A5). In addition, we can observe that GFED4 and MOPITTopt priors have

a deeper Northern Hemisphere sinks than GFED3 (particularly observed for Europe and Northern Asia, Fig. A5 and Fig. 8

and Fig. 9), which is balanced by stronger net sources over the Tropics (coming mainly from Southern Tropical Africa and

Southern Tropical Asia respectively, Fig. A5). For Tropical South Africa, we can see a discrepancy in the zonal flux distribution470

between GFED3 and, GFED4 and MOPITTopt which could result due to the adjustment and modification of the respiration

with the fires for GFED4 and MOPITTopt which is not considered for GFED3 as we took the fire and respiration directly from

CMS (GEOS-Carb). The scaling of GFED3 GPP and respiration to match the global AGR yields deeper biogenic sinks over

the Tropics than with all the other priors. We can also observed for Southern Tropical Africa that FIRE4 has larger fires than

FIREMo, consistent with the fact that GFFED4.1s CO was observing higher CO fire emissions than MOPITT (Fig. 5 and Fig.475

A1)

In addition, the global fires emissions indicate that FIREMo observes less emissions compared to all other priors, a difference

coming from tropical regions. These lower fire emissions observed by FIREMo in the Tropics come mainly from Tropical

Australia (with values in 2015 of ∼0.05 PgC/yr for FIREMo compared to ∼0.07 PgC/yr for FIRE4 and ∼0.095 PgC/yr

for FIRE3), Tropical Africa (∼0.35 PgC/yr, ∼0.50 PgC/yr, ∼0.55 PgC/yr respectively for FIREMo, FIRE4 and FIRE3) and480

Southern Tropical South America (∼0.1 PgC/yr, ∼0.17 PgC/yr, ∼0.2 PgC/yr respectively for FIREMo, FIRE4 and FIRE3).

Characteristics that came with the differences between GFED4.1s CO and MOPITT CO fire emissions (see Fig.5 and Fig.A2).

But we observe a larger fire emissions with FIREMo in Southern Tropical Asia (fire emissions of ∼0.37 PgC/yr for FIREMo

compared to ∼0.35 PgC/yr for FIRE4) and in Northern Tropical Asia (∼0.22 PgC/yr for FIREMo, ∼0.21 PgC/yr for FIRE4,

and ∼0.19 PgC/yr for FIRE3).485

We can then see the impact of including MOPITT CO data in the CO2 fire priors compared to the emission inventories

known to have biased carbon emissions in Tropical Asia. The larger emissions with FIREMo compared to FIRE4 over tropical

Asia comes mainly from some specific vegetation. The main vegetation type in this region is savanna and we can observe that

for the CO2 prior emissions, FIREMo has the higher flux for Northern tropical Asia (Southern tropical Asia) compared to

FIRE3 and FIRE4 (FIRE4 respectively) for savanna but also for agriculture and deforestation (see Fig. A3). Another impact of490

including CO MOPITT data in the CO2 fire priors appears in variability. As already observed with the CO emissions (Fig. A1)

and discussed in van der Laan-Luijkx et al. (2015) and Nechita-banda et al. (2018), the seasonality of fires over tropical Asia

is better capture with MOPITT than with the emission inventories for peat lands. However, this is not only true for peat but

also for other vegetation types. For savanna, agriculture and peat lands, FIREMo observed a peak in fire seasonality after the

peaks observed with the GFED (Fig. A4). This is particularly true for the 2015 El Niño fires but less for the fires that occurred495

in 2017 and 2018. In this period, FIREMO does not observed as much fire emissions as the GFED with a similar seasonality.

The difference in seasonality for 2015 could be a result of the large and intense fires during the El Niño event burning larger
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Figure 9. Same as Fig. 7 but for Northern Asia and Tropical Asia regions.
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regions and releasing more smokes which could have impacted the MODIS burned area data used in GFED but probably also

the MOPITT retrievals. Further investigation are then needed to study this region.

3.2.2 Comparison between the CO2 posterior fire and biospheric emissions : impact of re-balanced NEE and fire500

prior in CO2 posterior emissions

We assimilated OCO-2 and in situ data separately in order to assess the impact of these data in conjunction with different fire

emissions and corresponding land flux priors. In all inversions, only NEE and ocean fluxes have been optimized.

a) Global and latitudinal flux

Figure 10. Global and latitudinal CO2 posterior emissions between OCO-2 and in situ inversions as GFED4re (in blue), GFED3re (in green),

CMS (in black) and MOre (in red). Annual fluxes are displayed from 2015 (left) through 2018 (right). FIRE emissions are darker colored

bars, NEE fluxes are hatched bars and lines depict the net land fluxes.
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Figure 10 shows global and latitudinal annual net fluxes, FIRE and NEE fluxes for both OCO-2 and in situ inversions. We505

can see that globally, net fluxes for OCO-2 posterior emissions across the different priors are consistent. The sinks seem to

adjust the different fire contributions. This is also observed for the in situ inversions. The in situ inversions give, compared to

OCO-2 inversions, a ∼ 1 PgC/yr deeper net sink in 2015 and 2016, and a ∼ 2PgC/yr deeper net sink for 2017 and 2018, which

originates from a weaker source (or sink) in the Tropical regions than the OCO-2 informed inversions. These differences are in

agreement with the differences between OCO-2 and IS inversions the larger ensemble of inversions detailed in Crowell et al.510

(2019) and Peiro et al. (2022).

The Northern Hemisphere Extra-Tropics (NH Ext) posterior fluxes are consistent across the different priors for both ob-

servation constraints, which is not surprising given the good coverage of the in situ observations in this region. For OCO-2

inversions, we can see small variations from year to year (going to -2.5 PgC/yr in 2015 through -2.75 PgC/yr in 2016) except

for 2018 where the net sink drops to -2 PgC/yr. The net sinks observed with the in situ inversions are weaker than OCO-2515

for 2016, 2017, and 2018, and the year-to-year variations are significantly larger than the OCO-2 results. Similar behavior is

observed for the SH Ext and opposite behavior for the Tropics with larger sources for the OCO-2 inversions, which could be

related to cross-talk between the zonal bands given the sparse coverage of in situ data in the Tropics. However the net fluxes

are closer between in situ and OCO-2 inversions over the NH Ext than for the Tropics, where the in situ fluxes are generally

1-1.5 PgC less than the OCO-2 fluxes. The consistency across the priors for the Northern latitude bands are also observed in the520

simulation study of Philip et al. (2019) where they used different NEE priors to observe the impact on the OCO-2 posteriors.

Comparing the posterior emissions (Fig. 10) with the prior emissions (Fig. 7), we can see an impact from the observations

assimilated on the CMS prior which shift significantly toward the other posterior fluxes at global and latitudinal scales. CMS

posterior emissions seem to have slightly weaker sinks than the posterior using the rebalanced priors. The imposed AGR seems

then to have an impact at latitudinal scales. For the Tropics, we can again observe a consistency in OCO-2 across the priors.525

MOre and ISMOre have a smaller sink in 2015 (with sources for OCO-2 inversion) compared to the other inversions in order to

balance the 0.5 PgC/yr smaller fires that FIREMo gives. This balance was also observed for the priors (see Fig. A5). The range

of net flux observed with all OCO-2 inversions are consistent with other studies (Palmer et al., 2019; Crowell et al., 2019).

Further, the intense fires and CO2 sources related to the 2015 El Niño Oscillation over the Tropics and mainly Indonesia might

not be seen with in situ data due to their weak coverage in these regions. This could then explain why we observe stronger sinks530

with in situ than OCO-2 posterior NEE emissions. Comparing the OCO-2 inversions with the in-situ ones shows that the in situ

net fluxes are totally different with a Tropical sink in all years except in 2015 and 2016 which has a net source. 2017 and 2018

are particularly strong sinks of ∼ -0.5 PgC/yr. These deeper sinks would explain part of the larger global sink from the in situ

inversions. We will see in the next subsection that these sinks with in situ are coming from the Northern Tropical regions such

as Northern Tropical Africa and Northern Tropical Asia (see Fig. 11 and Fig. 13). As observed for the previous Extra-Tropical535

band, SH Ext shows similar fluxes across the priors for each data constraint. However 2016 is adjusted downward significantly

for the OCO-2 fluxes (between -0.4 PgC/yr and -0.6 PgC/yr) compared to the in situ fluxes (between -0.2 PgC/yr and 0.1

PgC/yr). In addition, while OCO-2 net fluxes have stronger sources in 2016 over the Tropics, they have a deeper sinks over the

SH Ext than with the in situ fluxes. This result suggest a transport connection between the Tropics and SH Ext fluxes with the
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OCO-2 inversions, where land coverage is limited and hence retrievals are sparser than the other regions. On the other hand,540

this does not seem to be the case in the in situ results, but we know that there are a few in situ data present in the SH Ext and

so they have a different data constraint.

The MOPITT results look like the GFED4.1s results for the Tropical regions, while the GFED3 and CMS results look alike,

suggesting the sensitivity in these regions to the fire prior, not only for IS but also for OCO-2 data constraint.

b) Regional fluxes545

When we compare the posterior regional fluxes, we can see difference in the carbon balance.

If we first look the Northern Extra-Tropical regions (North America, North Asia and Europe), we can see that the OCO-2

inversions have deeper net sinks over the Boreal regions than with OCO-2 (see Fig. A6). The in situ data are placing almost

all of the NH Ext sink over Northern Asia, while there are sources of carbon over North America for 2015. OCO-2 only sees

net sinks of carbon for all NH Ext. In-situ data do not have an homogenize coverage over the NH Ext band : large number of550

observations are situated over Temperate North America and Europe but are very sparse over the Boreal regions and Temperate

Eurasia (see Fig. 1). The large differences in net sinks occur then over the regions with few data (Boreal and Eurasia regions).

It is interesting also to see balance between the regions in Northern Hemisphere with Southern Hemisphere. For instance, it

seems that the 2018 drop off sinks (starting in 2017 and so representing the "recovery" period) observed with both IS and OCO-

2 over North Asia is balanced by the Tropical Asia (North and South) where net fluxes go from sources to sinks. 2015 was a555

large net sources of carbon (due to intense fires) while 2016, 2017 and 2018 are deeper sinks with IS over Northern Tropical

Asia and sinks with OCO-2 over Southern Tropical Asia. At the same time, posterior fluxes in Europe are anti-correlated with

posterior fluxes over Northern Tropical Africa. The deeper sinks observed with OCO-2 in Europe are anti-correlated with the

net sources observed in Northern Tropical Africa, where the post ENSO period has smaller sources in Northern Tropical Africa

linked with smaller sinks in Europe (Fig. 11). Emissions estimated observed with OCO-2 are more in line with previous studies560

even though the years of study were before 2015. Reuter et al. (2014) found, using GOSAT data, uptake of carbon per year

around 1 PgC/yr which was 0.5 PgC/yr higher than expected from in situ inversions. However, as mentioned in Reuter et al.

(2017), there is a lack of carbon budget information over Europe and there is hence no estimate that can be refuted at present.

We then can see that this deeper sinks in the NH Ext with OCO-2 are in fact balanced by the Tropics. The weaker net

sink observed with IS compared to satellite data was also observed with Houweling et al. (2015) who were using GOSAT565

retrievals instead of OCO-2 for the 2009-2010 period. Additionally, what is observed here between IS and OCO-2 inversions

was also observed in the study of Peiro et al. (2022) who found that by using OCO-2 v9 the inversions showed weaker sinks

over Northern Asia but a deeper sink over Europe and Northern America than with the in situ inversions. We can see that our

inversions here are within the estimates observed in the study of Peiro et al. (2022). However, for Europe, we can see that the

variability in our priors is different than the ones used in Peiro et al. (2022). Our re-balanced priors give the deepest sink in570

2017 (in 2016 for CMS prior) which is observed as well in the posteriors net fluxes using OCO-2 and it is in opposition of

the OCO-2 inversions of Peiro et al. (2022) which have deeper sinks in 2016. This is due to stronger fire emissions in 2017
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Figure 11. Same as fig.10 but for North Tropical Africa and Europe.
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compared to the other years balanced with the respiration, and the differences between the two studies could be due to the

re-balanced respiration.

In average for all regions, we can see a disagreement between IS and OCO-2 inversions but an agreement across priors within575

each observational constraint. Additionally, comparing the different priors, we can see that inversions using the FIREMo are

closer to the ones using FIRE4 while CMS is closer to the inversions using FIRE3, i.e. the fires seem to have more impact than

the rebalancing to match the global AGR. We can observe that for almost all regions, the sinks with NEE4 and NEEMo are

deeper than with NEE3 and CMS but they are balanced with higher sources for the other regions that have net sources, regions

mainly over the Tropics.580

Focusing on the Tropical regions, we can first see that for Northern Tropical South America (Fig. 12), OCO-2 fluxes are

consistent for each priors used with around 0.5 PgC/yr efflux during the El Niño period (2015-2016) and neutral emissions

during the recovery period. IS fluxes are also strong during the El Niño period, but remain moderately high in 2017. As observed

in the Fig. 1 of the paper of Peiro et al. (2022), which used the same set of IS data, the number of IS data does not decrease

significantly, meaning that changing observational coverage is not the cause of this behavior. One possible explanation is the585

lag between flux in the Tropics and observation by the in situ network, which could be aliasing flux signals in time, though

this hypothesis is difficult to test. For Northern Tropical Africa (Fig. 11), as already mentioned above, large difference are

seen between OCO-2 and IS inversions. OCO-2 net fluxes are strong with high sources of carbon between 0.5 PgC/yr and

1.5 PgC/yr. We can see also some fire-dependent differences : FIREMo and FIRE4 drop off for 2017 but FIRE3 driven fluxes

do not. This difference in 2017 is particularly observed with OCO-2. IS, on the contrary, give strong sinks in this region,590

the strongest one for all Tropical regions. Examining Fig. A5, we note the dependence of the IS posterior emissions known

with the priors. Northern Tropical Africa is known to have very few IS data compared to the other Tropical regions (Fig. 1).

Northern Tropical Asia (Fig. 13) shows agreements between the priors and OCO-2 data constraints for 2015 and 2016, but

shows significant differences between OCO-2 and IS for 2017 and 2018. The IS and OCO-2 inversions all agree together that

there is a source of carbon in 2015 but OCO-2 inversions have a smaller sink in 2016 while it is a source with IS (smaller with595

IS3re and IScms), which seems to show an impact of the El Niño event and impact of the fire priors with IS, while for 2017

and 2018, IS particularly seems to show a stronger recovery in the region than observed by OCO-2. The sparse coverage of

in-situ data over this region could explain the difference with OCO-2, though not specifically for 2017 alone, and hence further

investigations are needed for this region.

Very large differences between the IS and OCO-2 inversions appears for Southern Tropical South America (Fig. 12) as well.600

Interestingly, the OCO-2 posteriors emissions seem to be closer to the priors than the IS are. One explanation for that has been

mentioned previously in Peiro et al. (2022), where the cloud coverage above the moist Amazon decreases the amount of OCO-

2 retrievals, while IS data are located more inside the moist Amazon. This difference in posterior flux could then come from

different area of observation. In opposition to the other Southern Tropical regions, the ENSO signal appears in 2016 instead

of 2015 for OCO-2. This region follows the inter-seasonal variations of the Northern Tropical regions, which also see highest605

emissions in 2016.
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Figure 12. Same as Fig.10 but for North and Tropical America regions.
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Figure 13. Same as Fig.10 but for North Asia and Tropical Asia regions.
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Southern Tropical Africa is almost neutral in the OCO-2 posterior fluxes (see Fig. A6). We can see the large balance between

the intense fires and the respiration, which are anti-correlated in their variability. GFED4re and MOre have larger sources than

GFED3re and CMS. With the IS, there is large variation across the priors where IS4re and ISMOre both constrain a source of

carbon for the whole period, while ISCMS and IS3re have smaller source of carbon and even a sink in 2016 and 2017. These610

differences seem to suggest that both fires and respiration are especially important when observational coverage is limited.

Finally, Southern Tropical Asia (Fig. 13) shows difference among the prior ensemble for both OCO-2 and IS inversions with

particularly differences in the fires for 2015. The inversions adjusted the sinks for the MOre and GFED4re inversions to be

larger than the two other inversions in order to accommodate the smaller fires observed with FIREMo and FIRE4. This is not

observed however for the IS inversions which just show sources of carbon for both ISMOre and IS4re while the inversions615

constrained with the GFED3 fires (IS3re and IScms) give sinks of carbon showing smaller net carbon. The impact of the fires

over this region seems to have a strong impact with both data constraint. The IS inversions using FIREMo and FIRE4 show

then large sources in 2015, which are not observed with FIRE. If we compare the posteriors with the priors, we can in fact see

that the IS tends to be closer to the priors than the OCO-2 inversions. This suggest that for this region as well, the few amount

of IS data might explain this result and the larger amount of OCO-2 seems to better constrain the posterior fluxes.620

In summary, we observe consistent differences between the Northern latitudinal regions and the Tropics, where the respi-

ration tends to be higher over the Northern latitudes than the Tropics (which has larger sources), and IS has higher NEE than

OCO-2. Differences in the priors used show impact particularly over the Tropics where both GFED4 and MOPITT observe

large fires emissions. The MOPITT results look like the GFED4.1s results for the Southern Tropical regions, while the GFED3

and CMS results look alike, suggesting the sensitivity in these regions to the fire prior, not only for IS but also for OCO-2 data625

constraint.

3.2.3 Validation against TCCON data

As mentioned previously, most of the differences observed between in situ and OCO-2 inversions could be due to their respec-

tive coverage. in situ measurements have less data over the Tropics and Southern Hemisphere than OCO-2 retrievals. However,

besides the spatial coverage, satellite retrievals might be affected, particularly over the Tropics, by the consistently cloudy re-630

gion known as the Inter-Tropical Convergence Zone (ITCZ) as well as aerosols from biomass burning or dust (such as over and

near the Sahara). It is then important to validate the OCO-2 and in situ posterior simulated mixing ratios against independent

data. In this section, in order to explore the accuracy in the posterior fluxes, we evaluated the posterior fluxes by sampling the

resultant concentrations for comparison with TCCON measurements. All posterior mixing ratios have been sampled around

TCCON retrieval locations and times using the appropriate averaging kernels.635

For evaluation of our CO posteriors and priors emissions with TCCON (not shown here), we found that biases between

MOPITT CO posterior simulated mixing ratio and TCCON were lower than biases with the CO priors with on average a ∼ 5

ppb reduction each year. Additionally, for the 2015-2018 period, the posterior biases were ∼ 7 ppb underestimated TCCON

values while the priors were ∼ 13 ppb overestimated TCCON values.
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Figure 14. CO2 mixing ratio (in ppmv) of TCCON data (black) and the prior (a, b and c) and posterior (g, h and i) using MOre (red),

GFED4re (green), GFED3re (blue) and CMS (gray) over three regions: Northern Hemisphere Extra-Tropical (left plots), Tropics (middle

plots), and Southern Hemisphere Extra-Tropical (right plots). Differences against TCCON are shown in plots d, e, and f for the priors and j, k

and l for the posteriors. For the second and fourth rows, OCO-2 posterior simulated mixing ratio are in plain lines and IS posterior simulated

mixing ratio are in dashed lines. There are 16 TCCON sites for the northern hemisphere, 3 sites for the tropics and 4 sites for the southern

hemisphere.
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Figure 14 shows biases between prior and posteriors simulated mixing ratio (XCO2) of the different CO2 inversions against640

TCCON data by latitudinal bands : Northern Hemisphere Extra-Tropics (NH), Tropics (T), and Southern Hemisphere Extra-

Tropics (SH). The number of sites by latitude used for the validation are referenced in the figure caption. The priors used for

GFED4re, GFED3re and MOre inversions have similar errors and have particularly less biases over Southern Hemisphere than

over the Northern latitudinal (see table 6). CMS has the largest biases with large XCO2 overestimation of TCCON values (two

times more than biases observed with the three other priors) with biases of 4.82 ppmv in NH and 4.28 ppmv in the Tropics.645

CMS prior has in addition, the largest standard deviation values compared to the other priors and the lowest coefficient of

correlation (table 6). Improvements of biases and standard deviation with the GFED3re prior compared to CMS which also use

FIRE3 as fire prior, are likely due to the re-balanced respiration that match the NOAA growth rate. This re-balanced respiration

and growth rate matches have also been used for GFED4re and MOre priors. However, all priors XCO2 seems to have a positive

trend with increase of biases over the time, particularly pronounced for CMS XCO2.650

The three mixing ratio of the re-balanced priors are relatively similar, with the MOre prior showing more biases than GFED

for the Northern Hemisphere and less biases than GFED4 but more than GFED3 in the Southern Extra-Tropical hemisphere,

and almost similar biases than GFED4 in the tropics. However, the tropics have only 3 TCCON sites for validation. Validation

over this latitudinal band needs to be viewed with this in mind. In Southern Hemisphere, MOre prior has smaller biases than

GFED4re. This prior biases improvement might result from the optimized CO fire emissions in the MOre prior, which, has655

already mentioned, the CO posterior emissions were higher than the CO prior emissions (temperate South Africa and temperate

Australia). However the larger biases present in the CO2 priors with MOPITT fire compared to the GFED priors could come

form the underestimation of CO emissions observed with the CO posterior emissions over Boreal forests (CO biases are∼4ppb

lower with XCO posterior than prior for Eureka site but ∼5ppb higher for Ny-Alesund and Sodankyla, not shown here).

We observed in the results section that posterior fluxes had similarity across the priors for each data constraint for SH Ext660

(see Fig. 10) but 2016 is adjusted downward significantly in the OCO-2 fluxes. We observe, in Fig. 14.l, a larger negative

bias for OCO-2 than for IS particularly in 2016. For NH Ext, we observed previously (see Fig. 10 for North America and

Europe mainly), a strong sink for OCO-2 over the period compared to IS, which observed stronger year-to-year variability.

When evaluating with TCCON data (Fig. 14.j), we can see that OCO-2 has lower biases in 2015-2016 but higher biases for the

2015-2018 period and underestimates the concentration for almost the whole period compared to IS.665

The posterior XCO2 are in better agreement with TCCON measurements than the priors. Additionally, all standard deviation

and coefficient of correlation are similar between all inversions with slightly larger standard deviation for the IS inversions

than for the OCO-2 inversions. We can also see that all posteriors match the variability of TCCON compared to the priors.

Biases observed with CMS have been greatly reduced through the inversion, showing biases of the same order than the other

inversions.670
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Table 6. Bias in ppmv, standard deviation and coefficient of correlation between prior and posterior simulated mixing ratio, and TCCON by

latitudinal bands such as NH (Northern Extra-Tropics), SH (Southern Extra-Tropics) and T (Tropics) over the period 2015-2018.

priors

Latitudinal bands GFED3 GFED4 MOPITT CMS

NH 1.57 1.29 1.85 4.82

Bias T 1.49 2.05 2.07 4.28

SH 0.84 1.45 1.41 3.27

NH 3.66 3.67 3.79 5.05

Std T 4.10 3.96 4.18 4.28

SH 3.53 3.57 3.68 4.86

NH 0.982 0.981 0.978 0.948

Corr T 0.991 0.988 0.990 0.985

SH 0.991 0.993 0.992 0.987

posterior OCO-2 posterior IS

Latitudinal bands GFED3re GFED4re MOre CMS IS3re IS4re ISMOre ISCMS

NH -0.26 -0.27 -0.27 -0.27 0.12 0.12 0.12 0.12

Bias T 0.20 0.21 0.21 0.21 0.35 0.40 0.38 0.37

SH -0.44 -0.44 -0.44 -0.44 -0.20 -0.22 -0.21 -0.20

NH 3.40 3.40 3.40 3.40 3.53 3.52 3.53 3.54

Std T 3.33 3.34 3.34 3.34 3.43 3.41 3.42 3.46

SH 2.84 2.83 2.84 2.83 2.93 2.93 2.93 2.92

NH 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995

Corr T 0.994 0.995 0.995 0.994 0.994 0.995 0.995 0.994

SH 0.994 0.995 0.995 0.994 0.996 0.996 0.996 0.996

4 Discussion

In this study, we have presented an optimized CO2 fire prior flux based on emission ratio between CO2 and CO that comes

from optimized CO fire emissions using MOPITT CO retrievals. In addition, as fire emissions and plant respiration (and hence

net fluxes) are difficult to disentangle a priori, we re-balanced the respiration with each fire prior and with the annual NOAA

growth rate. We then explored a range of NEE emissions based on different fire emissions including a CO2 fire estimate675

calculated from CO fire emissions information in order to better constrain biospheric emissions. We focused our study for the

period 2015-2018 to observe the impact of the El Niño event in 2015 and the recovery period which followed it.

Globally, and for most regions, we find that the dependence of the inversion results on prior emissions is of secondary

importance when compared with the data constraint, in the sense that variations in posterior flux are much smaller across

different prior mean fluxes (and the different uncertainties that come from scaling the prior mean flux) as compared with680
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differences resulting from assimilating OCO-2 versus in situ data. There are exceptions, most notably in the Northern and

Southern Tropics, where the in situ constraint is especially limited and the corresponding posterior annual fluxes vary by as

much as 0.5 PgC, which is a large fraction of the expected total El Niño signal. This suggests that in situ constrained flux

estimates in the Tropics are more sensitive to the assumed prior flux, of which fires are a significant component, and should

be assigned the appropriate amount of uncertainty in accordance with this finding. It also implies that while residual biases685

in satellite retrievals remain a key focus of the top-down inversion community, further work is needed to improve prior fluxes

in Tropical regions as well as deploy more in situ measurements. Current efforts by multiple organizations should assist in

that effort on a short time basis, but more investments in long term monitoring are needed (communication from Kathryn

McKain). OCO-2 inversions are also sensitive to the prior assumption in Northern Africa, though to a lesser extent, as well as

in Tropical Asia. Tropical Asia have been particularly well studied in the past where Nechita-banda et al. (2018) and van der690

Werf et al. (2017) have shown the underestimation of GFED inventories over peat fires compared to space-based instruments

such as IASI and MOPITT. This reinforces the need for better measurements and bottom up estimates of biospheric and fire

fluxes in these Tropical regions. In 2015, during the onset of the El Niño event which caused intense fires over Indonesia,

the fire estimated from MOPITT CO emissions are stronger than with GFED4 emissions but lower than GFED3 emissions.

As mentioned previously, we know that GFED4.1s has information of small fires compared to GFED3 which allow better695

accuracy particularly over the Tropics where peat fires are important. Over Southern Tropical and Northern Tropical Asia, the

combination of the spatio-temporal variability of MOPITT CO fire and the GFED4.1s emissions information included in the

prior fire emissions of the CO inversion might bring additional information in the emission ratio and hence in the fire prior

used in CO2 inversions. Indeed, fires over peat lands spread more during the El Niño event due to intense drought conditions

(Nechita-Banda et al., 2018). Consequently, they emit two to four times more CO than forest fires (Akagi et al., 2011) and700

contribute significantly to the exchange between terrestrial carbon stocks and the atmosphere by decreasing the uptake of

atmospheric CO2 by the biosphere. This is particularly shown for the IS inversions where IS4re and ISMore have sources of

carbons compared to the IS constrained with the GFED3 fires, showing then higher net sources with GFED4 and MOPITT than

with GFED3 fires. Moreover, the CO2 posterior emissions using MOPITT CO information were able to catch the seasonality

of fires over Southern tropical Asia during the El Niño event as discussed in Nechita-Banda et al. (2018) and van der Laan-705

Luijkx et al. (2015) that the other priors using GFED inventory were not able to capture. It is thus important to include CO

fire emissions over this region to improve estimates and constrain CO2 NEE and Fire emission with both OCO-2 and IS data

constraints. But uncertainty in our emission ratio remains when converting CO to CO2 emissions in our prior. GFED vegetation

partition only account for six different types of vegetation which might not be finer enough to represent all different types of

fuels. Additionally, the emission factors used in the emission ratio are characteristic of vegetation type but are not dependent of710

spatial or temporal scales. We know, for instance, that African savanna fires can go from flaming to smoldering, changing the

combustion efficiency and then the gases emitted (Zheng et al., 2018). This could explain the differences observed over some

regions of the Tropics between the priors using CO fire emissions and the other prior fire emissions. Further works are needed

to improve emission ratios and particularly emission factors over different spatial and temporal scales.
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The data used to constrain the inversions are very important as we were able to see the differences between OCO-2 and IS715

inversions over this tropical region where the source is about 0.4 PgC/yr higher with IS than with OCO-2. This bring us to the

importance of data assimilated in the inversions but also about the priors used in the inversions regarding the different sectors

(fire and terrestrial emissions).

The difference in partitioning of fluxes in latitude and longitude for the different data constraints is not a new observation,

and fits the findings of the v7 OCO-2 MIP Crowell et al. (2019) and previous studies comparing GOSAT and in situ data720

(Reuter et al., 2014; Houweling et al., 2015)) as well as of the v9 OCO-2 MIP, an extension of the v7 OCO-2 MIP (Peiro et al.,

2022). More specifically, the OCO-2 data constrain a stronger Northern Extra-Tropical sink in concert with a strong tropical

source, while the in situ data generally constrain a weaker Northern sink and neutral Tropical flux, or even a sink. While the

Northern Extra-Tropics are relatively densely sampled by the in situ network, Schuh et al. (2019) found a strong sensitivity of

flux estimates to model transport, particularly in the vertical and meridional transport of CO2. Though we utilized only TM5725

in these experiments, the findings here are consistent with those found in their study.

Within each zonal band, there are disparities in how the flux is partitioned, but these are again driven more strongly by

data constraint than by prior. In the Northern Extra-Tropics, the partitioning of the sink across continents is more robust in the

OCO-2 posterior results than IS, with both North America and North Asia accounting for a sink of 1-1.5 PgC and Europe a bit

less. The IS results suggest a very strong sink in North Asia ( < -1.5 PgC) relative to North America (-0.6 PgC with around 0.5730

PgC of source in 2015) and Europe (-0.5 PgC to -0.1 PgC). When we look at the North Tropics, all inversions see a source in

North Tropical South America, and this persists longer in the IS measurements into 2017 while ending sooner in the OCO-2

inversions. The largest difference is in North Tropical Africa, where OCO-2 sees a persistent source with varying magnitude,

while IS fluxes depict a sink in 2015 and 2018 and near-neutral flux in 2016-2017. Given our current understanding of Africa’s

response to the El Niño from previous studies measurements (Gloor et al., 2018), strong sinks in Northern Africa are unlikely.735

Interestingly, IS fluxes imply a post El Niño recovery in the North Tropical Asia with net sources in 2015-2016 and sink of

more than 0.4 PgC per year in 2017-2018, while OCO-2 sees a progressive transition and smaller response from -0.2 PgC/yr

in 2016 through -0.4 PgC/yr in 2018. The Southern Tropics show most of the source activity from OCO-2 (southern tropical

South America and southern tropical Asia), while again the IS data constrain a sink, except in Southern Tropical Asia.

Returning to the question of importance of the prior, it would seem that the simulation experiments in Philip et al. (2019)740

hold for our experiments as well, i.e. that OCO-2 inversions are relatively insensitive to the prior in most regions.

A generally accepted (though not documented) assertion is that a minimal amount of data is required to constrain the global

growth rate, and yet we see here that OCO-2 and the global in situ network do not see the same global annual flux, even

assuming the same transport and prior flux that matches the NOAA AGR. Certainly some of this mismatch is due to sampling

differences, as most of the in situ measurements assimilated here are taken in the atmospheric boundary layer in the Northern745

Extra-Tropics, whereas OCO-2 measurements are globally distributed, but seasonally varying coverage. Persistent transport

biases as well as satellite retrieval errors likely play a factor in this global offset, though further investigation is necessary to

assess the relative importance of each.
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5 Conclusions

In this study, we have explored the potential of using CO/CO2 emission ratio to add CO fire information in CO2 inversions in750

order to better estimate and constrain CO2 biospheric emissions. Fires have the potential to influence inter-annual variability

and long-term trends in atmospheric CO2 concentrations and particularly alter the seasonal cycle of net biome production. CO

measurements are available with high precision from space and bring more accuracy in CO fire emission estimates. Including

more accurate fire emissions in CO2 inversions could improve the estimates of CO2 land fluxes relative to a CO2 inversion

without the added information of CO. In this paper, we showed how we added on global scale CO/CO2 emission ratio and its755

respective re-balanced respiration with fire and NEE with annual NOAA growth rate, and its value for CO2 inversions.

We performed several CO2 transport inversions assimilating separately OCO-2 data and in situ measurements from 2015

through 2018. We found that OCO-2 and in situ net fluxes have, even if with a difference, a better agreement at global scale

as observations are dense enough to constrain the fluxes than at latitudinal and regional scale. Differences in net fluxes are

particularly important over the Tropics not only between OCO-2 and in situ inversions but also between the different priors760

used. Discrepancies between in situ and OCO-2 inversions occurred over Northern Tropical Africa where OCO-2 inversions

have shown net sources while in situ inversions have shown sinks. However, over Southern Tropical regions, discrepancies

appear between the different set of priors, with higher net sources observed with the inversion using the CO/CO2 emission ratio

(MOre inversion) for OCO-2 inversion over Southern Tropical South America and with IS inversion over Southern Tropical

Asia, compared to the IS inversions using GFED3 fires. For tropical Asia, the constrain of priors seems to be more important765

than the data assimilated. Additionally, over this region, seasonality from CO2 inversions using MOPITT fires seems to be

better representative of the large Indonesian fires that occurred during the 2015 El Niño event.

TCCON evaluation suggested that the prior using the FIREMo (CO2 fire prior emissions computing using CO/CO2 emission

ratio) gives accuracy in CO2 mixing ratio comparable to GFED4 but with slightly larger biases over the Northern Hemisphere

and biases of the priors with the re-balanced respiration are smaller than the CMS prior. However, biases for the posterior770

simulated mixing ratio are in the same order. Evaluation mainly showed that biases have been decreased and variability matches

better those of TCCON for the re-balanced posterior simulated mixing ratio suggesting the importance of the accuracy in fire

priors and the re-balanced of terrestrial emission with fires for CO2 posteriors emissions.

We illustrated the potential of using CO/CO2 emission ratio, and the re-balanced respiration and NEE with fire and growth

rate, in CO2 inversion for better constraint and accuracy in the CO2 fire prior emissions and biospheric emissions estimates.775

We found that a priori CO2 flux uncertainties are substantially reduced when matching the NOAA AGR as well as CO/CO2

ratio but not strong enough compared to a re-balanced GFED and GFED4.1s NEE, and suggest hence for future work the

development of joint CO-CO2 inversions with multi-observations for stronger constraint in posterior CO2 fire and biospheric

emissions. Besides, the multi-species approach employing CO and CO2 for instance is important for the interpretation of

upcoming satellite data such as data from the future NASA Earth Venture Mission, GeoCarb.780
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Figure A1. Time series of CO fire emissions over the OCO-2 MIP region between fire priors (dot lines) and posteriors (solid lines) emissions.

Emissions are in TgCO/yr.
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Figure A2. Annual CO emissions for posterior and prior (hatched bars) over all OCO-2 MIP regions. Emissions are in TgCO/yr.
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Figure A3. Prior fire flux (top row) for 2015 over Northern (left) and Southern (right) Tropical Asia of GFED4re, GFED3re and MOre

by vegetation types. The percentage of vegetation over these two regions is also represented in the bottom row. The colors represent the

vegetation type : agriculture (gray), peat (red), savanna (brown), deforestation (yellow), and temperate forest (blue).
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Figure A4. Prior fire flux from 2015 through 2018 over Northern (top) and Southern (bottom) Tropical Asia of GFED4re, GFED3re and

MOre by vegetation types. The colors represent the vegetation type : agriculture (gray), peat(red), savanna (brown), deforestation (yellow),

and temperate forest (blue).
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Figure A5. Same as Fig. 7 but for all OCO-2 MIP regions.
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Figure A6. Same as Fig. 10 but for all OCO-2 MIP regions (from left to right, top to bottom) : Boreal North America, Temperate North

America, North Tropical South America, South Tropical South America, Temperate South America, Temperate North Africa, North Trop-

ical Africa, South Tropical Africa, Temperate South Africa, Boreal Eurasia, Temperate Eurasia, North Tropical Asia, South Tropical Asia,

Tropical Australia, Temperate Australia, and Europe. 44
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